Oral Exercises

Give the intercepts of the hyperbola and the equations of its asymptotes, Tell on which of the coordinate axes its foci lie.

$$1. \ \frac{x^2}{25} - \frac{y^2}{16} = 1$$

4.
$$4x^2 - y^2 = 16$$

2.
$$\frac{y^2}{1} - \frac{x^2}{9} = 1$$

5. $25x^2 - 4y^2 = 100$

3.
$$x^2 - 25y^2 + 25 =$$

6. $4x^2 - 9y^2 + 36 = 0$

7.
$$xy = k$$
, when $k = 0$

8.
$$y = \frac{1}{x}$$

9.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

Fritten Exercises

your graphs on a computer or a graphing calculator. dashed lines; (b) find the coordinates of the foci. You may wish to check In Exercises 1-12, (a) graph each hyperbola, showing its asymptotes as

1–6. Use the equations in Oral Exercises 1–6.

7.
$$x^2 = 9y^2 - 81$$

8.
$$y^2 = 5x^2 + 25$$

9.
$$75x^2 - 100y^2 = 7500$$

10. $25x^2 - 144y^2 = 3600$

11.
$$4x^2 - y^2 + 1 = 0$$

12.
$$16x^2 - 4y^2 + 64 = 0$$

Find an equation of the hyperbola described.

13. Foci (0, -8) and (0, 8); difference of focal radii 10.

14. Foci (-4, 0) and (4, 0); difference of focal radii 4.

15. Asymptotes $y = \frac{3}{2}x$ and $y = -\frac{3}{2}x$; foci $(0, -\sqrt{13})$ and $(0, \sqrt{13})$. **16.** Asymptotes $y = \frac{\sqrt{2}}{2}x$ and $y = -\frac{\sqrt{2}}{2}x$; foci $(0, -\sqrt{6})$ and $(0, \sqrt{6})$.

17. Asymptotes y = 3x and y = -3x; y-intercepts 3 and -3

18. Asymptotes y = x and y = -x; foci (-4, 0) and (4, 0).

Graph each inequality.

19.
$$y^2 - x^2 > 4$$
 20. $y^2 \le x^2 - 4$

21.
$$4x^2 \le y^2 + 16$$

22.
$$9x^2 > 4y^2 - 36$$

23. $\frac{x^2}{9} - \frac{y^2}{4} = 1$; $\frac{y^2}{4} - \frac{x^2}{9} = 1$ The hyperbolas $\frac{x^2}{p^2} - \frac{y^2}{q^2} = 1$ and $\frac{y^2}{q^2} - \frac{x^2}{p^2} = 1$ are conjugates of each other. Graph the following conjugate hyperbolas on the same coordinate axes.

Chapter o

24.
$$\frac{x^2}{1} - \frac{y^2}{4} = 1$$
; $\frac{y^2}{4} - \frac{x^2}{1} = 1$

Graph each equation. Each graph is half of a hyperbola, since \sqrt{a} is nonnegative.

25.
$$y = \sqrt{x^2 + 16}$$

27. $y = \sqrt{x^2 - 16}$

28.
$$y = \sqrt{x^2 + 1}$$

29. The statement "traveling 200 miles at x mi/h for y hours" can be described by the equation xy = 200. Consider the restrictions on x and y and then graph this equation. What does the graph tell you about the relationship between x and y?

points as foci and the given number as difference of focal radii Use the definition to find an equation of the hyperbola having the given

C 32.
$$(-c, 0)$$
, $(c, 0)$; $2a$

33.
$$(0, -c), (0, c); 2a$$

34.
$$(a, a), (-a, -a); 2a$$

35.
$$(-a, a), (a, -a); 2a$$

Mixed Review Exercises

Graph each equation.

1.
$$x^2 + 4y^2 = 16$$

2.
$$x^2 + y^2 - 2x + 4y + 1 = 0$$

3.
$$3x - 4y = 6$$

4.
$$2x^2 - 4x + y + 5 = 0$$

3.
$$3x - 4y = 6$$

4.
$$2x^2 - 4x + y + 5 = 0$$

5.
$$\{(x, y): y = 2x\}$$

6.
$$\{(x, y): x = 2y\}$$

7.
$$\{(x, y): x = y^2\}$$

9. $\{(x, y): y = |x|\}$

8.
$$\{(x, y): y = x^2\}$$

10.
$$\{(x, y): y = x\}$$

Historical Note / The Area of a Parabolic Section

tangent parallel to the base touches the parabola). Therefore, segment to the base from the point on the parabola where a the section) and h is the height (the length of a perpendicular Archimedes was able to show that the area of any section is the area of the section is $\frac{4}{3}$ as large as the area of the largest $\frac{2}{3}bh$, where b is the length of the base (the chord that cuts of triangles that fill the section more and more completely, By summing the areas of a sequence of smaller and smaller discovered a formula for the area of any section of a parabola About 240 B.C. the great Greek mathematician Archimedes angle that can be inscribed in it

