Chapter Summary

- 1. The ratio of a to b is the quotient $\frac{a}{b}$ (b cannot be 0). The ratio $\frac{a}{b}$ can also
- 2. A proportion is an equation, such as $\frac{a}{b} = \frac{c}{d}$, stating that two ratios are
- 3. The properties of proportions (see page 209) are used to change proportions into equivalent equations. For example, the product of the extremes
- 4. Similar figures have the same shape. Two polygons are similar if and only if corresponding angles are congruent and corresponding sides are in pro-
- 5. Ways to prove two triangles similar: AA Similarity Postulate
 - SAS Similarity Theorem SSS Similarity Theorem
- 6. Ways to show that segments are proportional:
 - a. Corresponding sides of similar polygons are in proportion.
 - b. If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides proportionally.
 - c. If three parallel lines intersect two transversals, they divide the transversals proportionally.
 - d. If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.

Chapter Review

Write the ratio in simplest form.

3.
$$\frac{16xy}{24x^2}$$

5-1

4. The measures of the angles of a triangle are in the ratio 4:4:7. Find the three measures.

Is the equation equivalent to the proportion $\frac{30-x}{x} = \frac{8}{7}$?

5.
$$7x = 8(30 - x)$$

6.
$$\frac{x}{30-x} = \frac{7}{8}$$

7.
$$8x = 210 - 7x$$

8.
$$\frac{30}{r} = \frac{15}{7}$$

9. If $\triangle ABC \sim \triangle NJT$, then $\angle B \cong \frac{?}{}$.

5-3

5-4

- **10.** If quad. *DEFG* ~ quad. *PQRS*, then $\frac{FG}{RS} = \frac{GD}{2}$.
- 11. $\triangle ABC \sim \triangle JET$, and the scale factor of $\triangle ABC$ to $\triangle JET$ is $\frac{5}{3}$. BC = 20, then $ET = \frac{?}{}$.
- 12. The quadrilaterals are similar. Find the values of x and y.

- 13. a. $\triangle RTS \sim ?$
 - b. What postulate or theorem justifies the

statement in part (a)?
14.
$$\frac{RT}{?} = \frac{TS}{?} = \frac{RS}{?}$$

15. Suppose you wanted to prove $RS \cdot UV = RT \cdot UH.$

You would first use similar triangles to show that $\frac{RS}{2} = \frac{?}{2}$.

If two triangles shown can be proved similar, state the similarity. If not, write no.

17.
$$\angle B \cong \angle D$$

18.
$$CN = 16$$
, $ND = 14$, $BN = 7$, $AN = 8$

19.
$$AN = 7$$
, $AB = 6$, $DN = 14$, $DC = 12$

20.

21. Which proportion is incorrect?

(1)
$$\frac{OS}{ST} = \frac{OV}{VW}$$
 (2) $\frac{SV}{TW} = \frac{OS}{ST}$ (3) $\frac{OT}{OW} = \frac{OS}{OV}$

$$(2) \ \frac{SV}{TW} = \frac{OS}{ST}$$

(3)
$$\frac{OT}{OW} = \frac{OS}{OV}$$

5-6

- 22. If OS = 8, ST = 12, and OV = 10, then $OW = \frac{?}{}$ 23. If OS = 8, ST = 12, and OW = 24, then $VW = \frac{?}{}$
- 24. In $\triangle ABC$, the bisector of $\angle B$ meets \overline{AC} at K. AB = 18, BC = 24, and