- 7. Suppose you want to prove that $\triangle RST \sim \triangle XYZ$ by the SSS Similarity Theorem. State the extended proportion you would need to prove first.
- **8.** Suppose you want to prove that $\triangle RST \sim \triangle XYZ$ by the SAS Similarity Theorem. If you know that $\angle R \cong \angle X$, what else would you need to
- 9. A pantograph is a tool for enlarging or reducing maps and drawings. Four 3 units and AB is 7 units. the parallelogram change, but P, D, and E remain collinear. Suppose PA is pencil at E so that the stylus traces the original. As E moves, the angles of To enlarge a figure, the artist inserts a stylus at D and guides the pen or and points P, D, and E lie on a line. Point P is fixed to the drawing board. bars are pinned together at A, B, C, and D so that ABCD is a parallelogram

- What is the ratio of PB to PA?
- c. What is the ratio of PE to PD?
- d. What is the ratio of the butterfly's wingspan, E'E, in the enlargement to its wingspan, D'D, in the original?

Written Exercises

Name two similar triangles. Also name the postulate or theorem that justifies

16. Given: $\frac{VW}{VY} = \frac{VZ}{VX}$

Which one(s) of the following must be true?

(1) $\triangle VWZ \sim \triangle VXY$ (2) $\overline{WZ} \parallel \overline{XY}$

 $(3) \ \angle 1 \cong \angle Y$

Prove: $\overline{WZ} \parallel \overline{XY}$

N. Are two triangles similar? If so, state the similarity and the scale factor. One triangle has vertices A, B, and C. Another triangle has vertices P, K, and

	AB	BC	AC	PK	KN	PN
7.	6	8	10	9	12	15
00	6	8	10	15	9	12
9.	6	8	10	25	20	16
10.	12	16	18	20	22.5	15

12. Given:
$$\frac{DE}{GH} = \frac{EF}{HI}$$
; $\angle E \cong \angle H$

Prove:
$$\frac{EF}{HI} = \frac{DF}{GI}$$

13. Given:
$$\frac{JL}{NL} = \frac{KL}{ML}$$

Prove: $\angle J \cong \angle N$

14. Given:
$$\frac{AB}{SR} = \frac{BC}{RA} = \frac{CA}{AS}$$

Prove: $\frac{BC}{BC} \parallel \overline{AR}$

