11. If
$$mRT = 80$$
 and $mUS = 40$, then $m \angle 1 = \frac{?}{?}$.

12. If $mRU = 130$ and $mTS = 100$, then $mUS = \frac{?}{?}$.

13. If $m\angle 1 = 50$ and $mRT = 70$, then $mUS = \frac{?}{?}$.

14. If $m\angle 1 = 52$ and $mUS = 36$, then $mRT = \frac{?}{?}$.

Find the measure of each numbered angle. can write are measures alongside the ares. Draw your own large diagram so that you $mB\widetilde{C} = 90$; $m\widetilde{CD} = 30$; $mD\widetilde{E} = 20$

A 1-10. BZ is tangent to OO; AC is a diameter;

Written Exercises

Proof:

1. Draw chord
$$\overline{BC}$$
.

2. $m \le 1 + m \le 2 = m \le 3$

3. $m \le 1 = m \le 3 - m \le 2$

4. $m \le 3 = \frac{1}{2}mAC$; $m \le 2 = \frac{1}{2}mBD$, or

5. $m \le 1 = \frac{1}{2}mAC - \frac{1}{2}mBD$, or

 $m \le 1 = \frac{1}{2}(mAC - mBD)$

10. Supply reasons to complete a proof of the first case of Theorem 7-10.

State an equation you can use to find x. Then find the value of x.

In Exercises 15-17, \overline{PX} and \overline{PY} are tangents.

- 15. If mXZY = 250, then $m \angle P = \frac{?}{}$.
- **16.** If $\widehat{mXY} = 90$, then $m \angle P = \frac{?}{}$.
- 17. If $m \angle P = 85$, then $\widehat{mXY} = \frac{?}{}$.

In Exercises 18-20, \overline{AT} is a tangent.

- **18.** If $\widehat{mCT} = 110$ and $\widehat{mBT} = 50$, then $m \angle A = \frac{2}{100}$.
- 19. If $m \angle A = 40$ and $\widehat{mBT} = 40$, then $\widehat{mCT} = \frac{?}{?}$.
- **20.** If $m \angle A = 35$ and $\widehat{mCT} = 110$, then $\widehat{mBT} = \frac{?}{}$.

- 21. A quadrilateral circumscribed about a circle has angles of 80°, 90°, 94°, and 96°. Find the measures of the four nonoverlapping arcs determined
 - 22. Prove Case II of Theorem 7-10. (Hint: See Classroom Exercise 10. In a figure like the second one shown below the theorem on page 318, draw the chord joining the points of tangency.)
 - 23. Prove Case III of Theorem 7-10.
 - 24. Write an equation involving a, b, and c.

26. \overline{PT} is a tangent. It is known that $80 < m\widehat{RS} < m\widehat{ST} < 90$. State as much as you can about the measure of $\angle P$.

27. \overline{AC} and \overline{AE} are secants of $\bigcirc O$. It is given that $\overline{AB} \cong \overline{OB}$. Discover and prove a relation between the measures of \widehat{CE} and \widehat{BD} .

28. Take any point P outside a circle. Draw a tangent segment \overline{PT} and a secant \overline{PBA} with \overline{A} and \overline{B} points on the circle. Take K on \overline{PA} so that PK = PT. Draw \overrightarrow{TK} . Let the intersection of \overrightarrow{TK} with the circle be point X. Discover and prove a relationship between \widehat{AX} and \widehat{XB} .