

.ərugii	вчср	10	area	the	Find	
---------	------	-----------	------	-----	------	--

	(NCI		i	99 .	801	i	i	V
741	yx?!	0 \ C	7 1/2	14	i	m č.II	mo 7	ч
3 1/2	6	$\frac{9}{5}$	zΛε	1.	81	m 2.č	8 cm	q
i	xς	<u>E/(9</u>	.c	*#>	.c	·7	ı.	13

Exercises 1-8 refer to triangles. Complete the table.

Written Exercises

- 4. Find the area of AEBC.

- 15. A parallelogram has sides 12 cm and 20 cm long. If the shorter altitude is 6 cm long, how long is the other altitude?
 - **16.** \overline{FG} is the altitude to the hypotenuse of $\triangle DEF$. Name three similar triangles and find their areas. (*Hint*: See Theorem 6-1 and Corollary 1 on page 248.)

29.

31.

32.

For

34.

35.

36.

- **B** 17. a. Let \overline{AM} be a median of $\triangle ABC$. If BC = 16 and h = 5, find the areas of $\triangle ABC$ and $\triangle ABM$.
 - **b.** Write an outline of a proof that if \overline{AM} is a median of $\triangle ABC$, then

M is a median

ABC.

B

M

- 18. An isosceles triangle has sides 5 cm, 5 cm, and 8 cm long.
 - a. Find its area.b. Find the lengths of the three altitudes.
- 19. If the area of parallelogram PQRS is 36, find the area of $\triangle TRS$.

- **20.** Find the ratio of the areas of $\triangle ABD$ and $\triangle ADC$.
- **21.** If the area of $\triangle ABC$ is 240, find the length of the altitude from C to \overrightarrow{AB} .

Find the area of each figure.

- 22. A rhombus with perimeter 40 and one diagonal 12
- 23. A 30°-60°-90° triangle with hypotenuse 8
- **24.** An isosceles right triangle with hypotenuse x
- 25. An equilateral triangle with height 12
- **26.** A regular hexagon with perimeter 60
- 27. A rectangle with length 24 inscribed in a circle with radius 13
- 28. Use the diagram shown at the right.
 - **a.** Find the area of $\square PQRS$.
 - **b.** Find the area of $\triangle PSR$.
 - c. Find the area of $\triangle OSR$. (Hint: Refer to $\triangle PSR$ and use Exercise 17.)
 - **d.** What is the area of $\triangle PSO$?
 - e. What must the area of $\triangle POQ$ be? Why? What must the area of $\triangle OQR$ be?
 - f. State what you have shown in parts (a)–(e) about how the diagonals divide a parallelogram.

