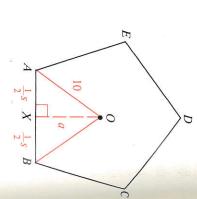
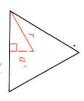
4. Complete the table below.

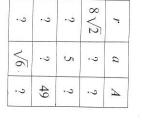

20	30	?	. ?	.9	Measure of central angle (in degrees)
	?	360	10	9	Number of sides of regular polygon

Find the area of each regular polygon described

- 5. A regular octagon with side 4 and apothem a.
- **6.** A regular pentagon with side s and apothem 3
- 7. A regular decagon with side s and apothem a.
- 8. ABCDE is a regular pentagon with radius 10. **a.** $m \angle AOB =$
- **b.** Explain why $m \angle AOX = 36$.

271 or a calculator. Note: For parts (c)-(e), use the table on page


- c. $\cos 36^\circ = \frac{a}{10}$. To the nearest tenth, $a \approx \frac{a}{10}$
- **d.** sin 36° = $\frac{\frac{1}{2}s}{9}$. To the nearest tenth, $s \approx \frac{9}{2}$
- e. Find the perimeter and area of the pentagon


Written Exercises

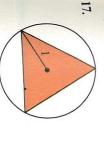
p represents the perimeter and A represents the area. Copy and complete the tables for the regular polygons shown. In these tables,

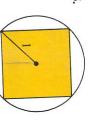
1

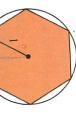
D

~	7.	.5	Ċν	
,	.9	.9	6	- 7
;	?	4	.9	a
$9\sqrt{3}$	12	?	?	p
. ?	?	. 9	?	A

6 ?	r 4 c.	$\begin{cases} a \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$; ;	
		6	.9 .	


Find the area of each polygon.


13. Equilateral triangle with radius $4\sqrt{3}$


W

- 15. Regular hexagon with perimeter 72
 - 14. Square with radius 8k
- 16. Regular hexagon with apothem 4

the perimeter, and the area of each polygon. Use $\sqrt{3} \approx 1.73$ and $\sqrt{2} \approx 1.41$. Three regular polygons are inscribed in circles with radii 1. Find the apothem,

- 20. Let s be the length of the side of a square that is inscribed in a circle with
- **a.** Find s and the perimeter, p, in terms of r. radius r.
- b. Express an approximation to the perimeter found in part (a) by using
- $\sqrt{2} \approx 1.414$.
- 21. A regular decagon is shown inscribed in a circle with radius 1. **a.** Explain why $m \angle AOX = 18$. Use a calculator or the table on page 271 to evaluate
- OX and AX below.

$$\sin 18^\circ = \frac{AX}{1}$$
, so $AX \approx \frac{?}{?}$
 $\cos 18^\circ = \frac{OX}{1}$, so $OX \approx \frac{?}{?}$

- Perimeter of decagon \approx
- **d.** Area of $\triangle AOB \approx \frac{?}{}$
- e. Area of decagon $\approx \frac{?}{}$

C

- 22. Find the area and perimeter of a regular dodecagon (12 sides) inscribed in a circle with radius 1. Use the procedure suggested by Exercise 21.
- 23. A regular polygon with n sides is inscribed in a circle with ra-
- a. Explain why $m \angle AOX = \frac{180}{...}$
- **b.** Show that $AX = \sin\left(\frac{180}{n}\right)^{\circ}$.
- c. Show that $OX = \cos\left(\frac{180}{n}\right)^{\circ}$
- **d.** Show that the perimeter of the polygon is $p = 2n \cdot \sin\left(\frac{180}{n}\right)^c$
- e. Show that the area of the polygon is $A = n \cdot \sin\left(\frac{180}{n}\right)^{\circ} \cdot \cos\left(\frac{180}{n}\right)^{\circ}$

COMPUTER KEY-IN

perimeter and area are given by the formulas previously derived in Exercise 23. Perimeter = $2n \cdot \sin\left(\frac{180}{n}\right)^{\circ}$ If a regular n-sided polygon is inscribed in a circle with radius 1, then its

Area =
$$n \cdot \sin\left(\frac{180}{n}\right)^{\circ} \cdot \cos\left(\frac{180}{n}\right)^{\circ}$$