Classroom Exercises

- 1. What do the arrowheads in the diagram tell you?
- **2. a.** How are lines *k* and *l* related?
- **b.** How are lines k and p related? Why?

State the postulate or theorem that justifies each statement.

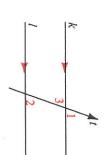
- 3. $\angle 1 \cong \angle 5$
- 4. $\angle 3 \cong \angle 6$
- 5. $m \angle 4 + m \angle 6 = 180$
- **6.** $m \angle 4 = m \angle 8$
- 7. $m \angle 4 = m \angle 5$
- $\angle 6 \cong \angle 7$
- $\angle 3$ is supplementary to $\angle 5$.
- 12. Alan tried to prove Postulate 10 as shown below. However, he did not 11. If $m \angle 1 = 130$, what are the measures of the other numbered angles?

If two parallel lines are cut by a transversal, then corre-

have a valid proof. Explain why not.

Given: $k \parallel l$; transversal t cuts k and l. sponding angles are congruent.

Prove: $\angle 1 \cong \angle 2$



Proof:

Statements	Reasons
1. $k \parallel l$; t is a transversal.	1. Given
 ∠3 ≈ ∠2 	2. If 2 parallel lines are cut by a transversal, then alt. int. \leq are \cong .
$3. \ \angle 1 \cong \angle 3$	3. Vert. \angle s are \cong .
$4. \ \angle 1 \cong \angle 2$	4. Transitive Prop. of \cong

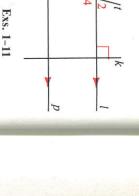
Written Exercises

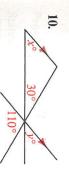
1. If $a \parallel b$, name all angles that must be congruent to $\angle 1$. 2. If $c \parallel d$, name all angles that must be congruent to $\angle 1$.

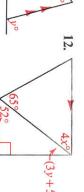
Assume that $a \parallel b$ and $c \parallel d$.

- 3. Name all angles congruent to $\angle 4$.
- **4.** Name all angles supplementary to $\angle 4$.
- 5. If $m \angle 16 = 50$, then $m \angle 14 = \frac{?}{}$ and $m \angle 2 = \frac{?}{}$.
- **6.** If $m \angle 9 = x$, then $m \angle 12 = \frac{?}{}$ and $m \angle 7 = \frac{?}{}$.
- Exs. 1-6

Find the values of x and y.







13. Write the reasons.

Given: $k \parallel l$

Prove: $\angle 6$ is supp. to $\angle 7$.

	1	K
3/7	4/8	2/6 1/5
1	•	Y

Proof:

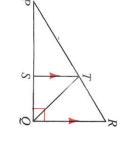
Statements

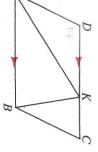
Reasons

KIL	1?
$m \angle 6 = m \angle 8$	2?
$m \angle 8 + m \angle 7 = 180$	3?
$m \angle 6 + m \angle 7 = 180$	
$\angle 6$ is supp. to $\angle 7$.	<u>ح</u> ?

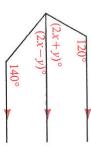
14. Given: $\overrightarrow{PQ} \perp \overrightarrow{QR}$; $\overrightarrow{ST} \parallel \overrightarrow{QR}$; \overrightarrow{QR} bisects $\angle PQR$.

- a. Find the measures of $\angle QST$, $\angle SQT$, and $\angle STQ$.
- **b.** If you are also given that $m \angle R = 60$, find the measure of $\angle QTR$.
- 15. Given: $\overline{AB} \parallel \overline{CD}$; $m \angle D = 116$; \overrightarrow{AK} bisects $\angle DAB$.
- **a.** Find the measures of $\angle DAB$, $\angle KAB$, and $\angle DKA$.
- b. Is there enough given information for you to conmore information needed? clude that $\angle D$ and $\angle C$ are supplementary, or is





16. Find the values of x and y.



Use the diagram in Exercise 13. Write proofs in two-column form.

- 17. Given: $k \parallel l$
- Prove: $\angle 2 \cong \angle 7$
 - **18.** Given: $k \parallel l$
- Prove: $\angle 1$ is supplementary to $\angle 7$.
- 19. Copy what is shown for Theorem 2-3 on page 60. Then write a proof in two-column form.
- **20.** Draw a four-sided figure ABCD with $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{BC}$. **a.** Prove that $\angle A \cong \angle C$.
- Is $\angle B \cong \angle D$?
- **21.** Given: $AS \parallel BT$;

C

- $m \angle 4 = m \angle 5$ Prove: \overrightarrow{SA} bisects $\angle BSR$.
- 22. Given: $\overline{AS} \parallel BT$; $m \angle 4 = m \angle 5;$
- Find the measure of $\angle 1$. \overrightarrow{SB} bisects $\angle AST$.
- 2-3 Proving Lines Parallel

repeated so you can compare the wording of the postulates. angles are parallel. The key to doing this is Postulate 11 below. Postulate 10 is congruent or supplementary you will conclude that certain lines forming the mentary. In this section, the situation is reversed. From two angles being parallel. You then concluded that certain angles were congruent or supple-In the preceding section, you saw situations in which two lines were given as

Postulate 10

If two parallel lines are cut by a transversal, then corresponding angles are

Postulate 11

then the lines are parallel. If two lines are cut by a transversal and corresponding angles are congruent,

The next three theorems can be deduced from Postulate 11.

Theorem 2-5

then the lines are parallel. If two lines are cut by a transversal and alternate interior angles are congruent,

Given: Transversal t cuts lines k and n;

 $\angle 1 \cong \angle 2$

Prove: $k \parallel n$

Proof:

Statements

l. Transversal t cuts k and n.

- 2. $\angle 3 \cong \angle 1$
- $3. \ \angle 1 \cong \angle 2$
- 4. $\angle 3 \cong \angle 2$
- 5. $k \parallel n$

- Reasons
- 2. Vert. & are \cong .

Given

- 3. Given
- 4. Transitive Property
- 5. If two lines are cut by a transversal and corr. & are ≅, the lines are ∥.

Theorem 2-6

mentary, then the lines are parallel. If two lines are cut by a transversal and same-side interior angles are supple-

Given: Transversal t cuts lines k and n; $\angle 1$ is supplementary to $\angle 2$.

The proof is left as Exercise 19.

Theorem 2-7

In a plane, two lines perpendicular to the same line are parallel.

Given: $k \perp t$; $n \perp t$

Prove: $k \parallel n$

The proof is left as Exercise 20.

